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metry elements of a bicrystal. The former must always 
be perpendicular to the interfacial plane and the later 
parallel to it (except of colour-reversing rotoinversion 
axes; see § 2). In order to take into account these 
restrictions, we consider that the symmetry group of 
the dichromatic complex is sectioned by a unique 
two-sided plane. Thus, the symmetry of the bicrystal 
associated with the particular orientation of the inter- 
facial plane is expressed by the set of symmetry 
operations of the dichromatic group that leave the 
two-sided sectional plane invariant. This procedure 
provides us with a comprehensive method for inves- 
tigating generic relations amongst bicrystals corre- 
sponding to the same misorientation relationship of 
their components. 

The most important conclusion achieved by study- 
ing the bicrystal symmetry by this method is that 
crystallographically equivalent interfacial planes 
create bicrystals with symmetry-related structures. 
Symmetry-related bicrystals arise as a consequence 
of dissymmetrization, and in this respect the idea of 
regarding a bicrystal as having been created by sec- 
tioning the corresponding dichromatic complex is 
most helpful. 

Further examination of generic relations amongst 
bicrystals can be accomplished by employing the 

proposed classification of interfaces. The distinction 
of four types of interfaces, namely completely rigid, 
orientation-rigid, elevation-rigid and non-rigid inter- 
faces, is important in connection with the physical 
properties of bicrystals. For the first three types of 
interfaces a small deviation from the orientation 
and/or position of the corresponding interfacial 
plane may be related to a sharp transition in the 
properties of the bicrystals. On the other hand, the 
symmetry considerations presented in this paper indi- 
cate that non-rigid interfaces can exhibit smooth 
changes of their physical properties over a wide range 
of interfacial orientations. 
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Abstract 

On the basis of the dynamical electron diffraction 
theory of Cowley & Moodie [Acta Cryst. (1957), 10, 
609-619], a new formula has been derived for the 
multiple-beam image intensity expressed in terms of 
the projected potential distribution as well as the 
specimen thickness. According to this formula, crys- 
tals for which the weak-phase-object approximation 
does not hold can be treated by the pseudo-weak- 
phase-object approximation (PWPOA) up to a certain 
critical thickness. Here the real crystal is replaced by 
its imaginary isomorph, where the constituent heavy 
atoms behave as lighter atoms than those of the real 
crystal, and vice versa. The validity of the PWPOA is 
discussed and confirmed by the comparison of the 
images of chlorinated Cu phthalocyanine calculated 
with PWPOA and the multislice method. 

0108-7673/85/040376-07501.50 

1. Introduction 

According to the weak-phase-object approximation 
(WPOA) the image intensity is expressed as 

I(x, y)=  1 - 2o'~(x, y) (1.~) 

under the optimum defocus condition (Schemer, 
1949; Cowley & Iijima, 1977), where tr = ~rlAE, A is 
the wavelength of electrons, E the accelerating vol- 
tage and ~(x, y) the projection of the potential distri- 
bution function (PPDF) of the weak phase object 
along the beam direction. Formula (1.1) shows a 
linear relationship between the image intensity and 
the PPDF. But it is well known that structure images 
corresponding to the projection of the crystal struc- 
ture can be obtained with specimens considerably 
thicker than the WPOA holds for. This was inter- 
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preted by a simple theory of large phase changes 
(Cowley & Iijima, 1972) and the projected charge 
density approximation (Cowley & Moodie, 1960; 
Allpress, Hewat, Moodie & Sanders, 1972; Lynch & 
Moodie, 1975). Nevertheless, for direct observation 
of the crystal structure or defect by high-resolution 
electron microscopy it is still desirable to prepare the 
specimens as thin as possible, because for too thick 
crystals the dynamical scattering may cause drastic 
deviation of the image from the projection of the 
crystal structure even if the image is taken under the 
optimum defocus condition (Grinton & Cowley, 
1971 ; Cowley & Iijima, 1977; Ishizuka & Iijima, 1981 ; 
Uyeda, Kobayashi, Ishizuka & Fujiyoshi, 1978-79; 
Kirkland, Siegel, Uyeda & Fujiyoshi, 1980; Li & 
Hashimoto, 1984). 

However, on the other hand the dynamical scatter- 
ing effect is useful for enhancing the image contrast 
of light atoms when the crystal consists of heavy and 
light atoms. In addition, there is an optimum crystal 
thickness, which is most advantageous for revealing 
the light atoms together with the heavy atoms in the 
image with sufficient contrast (Li & Hashimoto, 1984). 

In the present paper the dependence of the image 
intensity on the PPDF as well as the thickness of the 
sample has been studied. 

2. Approximation to the multiple-beam dynamical 
electron diffraction theory 

According to the multiple-beam dynamical diffrac- 
tion theory formulated by Cowley & Moodie (1957), 
transmission of electrons throt~gh a sample is rep- 
resented by transmission through each slice and 
propagation of electrons from one slice to the next. 

If the examined crystal can be divided into the 
same slices of very small thickness, for instance about 
3/~, then each slice will act as a weak phase object. 
If the absorption is ignored, the transmission function 
of one slice can be expressed as 

ql(x, y ) =  1-itr~p(x, y) (2.1) 

for at~ incident plane wave with unit amplitude, where 
~p(x, y) is the PPDF for one slice. 

T h e  phase shift of the electron wave passing 
through each slice is assumed to take place at the 
bottom. The wave transmitted through the first slice 
and subsequently propagated to the bottom of the 
second slice is expressed as 

qx(x, y) • p(x, y) = 1 - icrq~(x, y) * p(x, y). 
(2.2) 

Here * represents the operation of convolution and 
p(x, y) the Fresnel propagation function: 

p ( x , y ) = ( i / t ) e x p [ - ( i , n ' / t ) ( x 2 + y 2 ) ] ,  (2.3) 

where 

t = XAz (2.4) 

and Az is the slice thickness. The wave function of 
electrons leaving the second slice is 

q2(x, y) = ql(x, y)[ql(x, y) * p(x, y)] 

= 1 - icrq~(x, y ) -  itr~p(x, y) * p(x, y) 

- cr2q~(x, y)[q~(x, y) * p(x, y)]. (2.5) 

The last term on the fight-hand side of (2.5) indicates 
the double scattering, which can be ignored compared 
with the first-order term of q~ (x, y) for very thin slices. 
Hence, 

q2(x, y) = 1 - icrq~(x, y ) -  icrgo(x, y) * p(x,  y). 
(2.6) 

Obviously, q2(x, y) is just the transmission function 
of the crystal consisting of two slices. 

Let q,+~(x, y) represent the transmission function 
of the crystal consisting of n + 1 slices, then 

q,,+l(x, y) = ql(x, y),,(" " " 2{ql(x, y) 

x l[ql(x, Y) * e(x,  y)]l 

• p(x, Y)}2 * ' ' "  * p(x, y)) , .  (2.7) 

If the multiple scattering is ignored in each slice, 
qn+l(X, y) can be simplified as 

q,,+l(x,y) 

= 1 - icrq~(x, y ) -  itrq~(x, y) * p(x, y) 

- icr~p(x, y) * p(x, y) * p(x, y ) . . .  

- icrq~(x, y) * p(x, y) * p(x, y) * . . .  * p(x, y!. 

• n times (2.8) 

The Fourier transform of (2.8) gives the diffracted 
wave function at the back focal plane of the objective 
lens for the crystal consisting of n + 1 slices: 

Qn+l(u, v ) = 8 ( u ,  v ) - io 'F(u ,  v) 

- i t rF(u ,  v) ~ PJ(u, v), (2.9) 
j = l  

where 8(u, v) denotes the Dirac delta function and 

F(u, v )= ~'[q~(x, y)], (2.10) 

P(u, v)=  ~[p(x ,  y)]. (2.11) 

~: is the symbol of Fourier transform operation. 
F(u, v) is the kinematical structure factor. The Fou- 
rier transform of (2.3) yields 

P(u, v)=exp[icrt(u2+v2)],  (2.12) 

then 

PJ(u, v)=exp[i~j t (uE+v2)] .  (2.13) 
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3. Multiple-beam image intensity 

It is well known that the defocus and the spherical 
aberration of the lens introduce a phase factor 
exp [ix(u, v)] to the electron waves in the back focal 
plane of the lens. Here 

X(U, O)= "rrCsAS(u2+1)2)2/2+ 7rAfA(u 2+/~2), (3.1) 

where Cs represents the spherical aberration 
coefficient and Af the defocus amount (positive for 
overfocus). Since under the optimum defocus condi- 
tion the imaginary part of the phase factor, sin X, is 
roughly equal to -1  in a considerably wide range of 
the spatial frequency and the real part cos x is negli- 
gibly small (Scherzer, 1949), 

exp[ix(u, v)]=-i. (3.2) 

Hence, lander the optimum defocus condition the 
modified diffracted wave function for the crystal con- 
sisting of n + 1 slices is 

Qn+1(u, v) exp[ix(u, v)] 

=8(u ,  v)-o.F(u, v)-o.F(u, v) ~ PJ(u, v). (3.3) 

The Fourier transform of (2.16) gives the wave 
function on the image plane for the crystal consisting 
of n + 1 slices as 

~.+,(x. y ) =  1 -o.~,(x. y) 

-o.q~(x,y)* ~ ~;-'[PJ(u, v)]. 
j = l  

Because 

(3.4) 

Hence, the image intensity for the crystal consisting 
of n + 1 slices is 

I,+~(x, y) = I~b,+~(x, y) l  2 

- 1 - o.q,(x, y) • St(x, y) 
j = l  

+ o. o(x, y )  • C j ( x ,  y )  
j = l  

= 1-2o.~o(x, y)+o'2q~2(x, y) 

Sj(x,y) 
.j= 1 

j = l  

+ o.2 y) • St(x, y) 
j = l  

+ o .2 ~o(x, y) * ~ Cj(x, y) (3.9) 
j = l  

The first two terms in the final expressions for 
In+~(x, y) represent the image intensity for the one- 
slice crystal, or rather the image intensity in WPOA. 
o'2~2(x, y) can be ignored as usual, compared with 
2o.¢(x, y) while all other additional terms in (3.9) are 
significant because they are dependent upon the 
crystal thickness and modify the image contrast 
appreciably with increase in thickness. Note that the 
first-order terms of ¢(x, y) would increase the image 
contrast with the crystal thickness while the second- 
order terms decrease it. 

~;-'[PJ(u, v)]= ~ exp [ilrjt(u2 + v2)] 

x exp [-27ri(xu + yv)] du dv 
= (1/jt) sin (zr/jt)(x 2 + y2) 

+(i/jt) cos (cr/jt)(x2 + y2), (3.5) 

(3.4) can be expressed as 

g,,,+l(x, y)= 1-o.~o(x, y)-o.go(x, y) * ~ St(x, y) 
j=l 

- io'q~(x, y) * ~ C i(x , y), (3.6) 
j = l  

where 

Sj(x,y)=(1/jt)sin(Tr/jt)(x2+y2), (3.7) 

C~(x,y)=(1/jt)cos(Tr/jt)(xE+y2). (3.8) 

Hereafter Sj(x, y) will be called a Fresnel sine func- 
tion and Cj(x, y) a Fresnel cosine function of orderj. 

4. Fresnel sine and cosine spread PPDF 

In order to evaluate the overall influence of all addi- 
tional terms in equation (3.9), the convolutions of the 
PPDF ~o(x, y) with the Fresnel sine and cosine func- 
tions are analysed. For simplicity, a Gaussian 
function 

G(r)  = A exp (-r2/R 2) (4.1) 

is used instead of tp(x, y), where 

r 2 = x 2 ÷ y 2 .  (4.2) 

In the radial coordinate system the Fresnel sine and 
cosine functions given in (3.7) and (3.8) are written as 

Sj(r)=(1/jt)sin(Tr/jt)r 2 (4.3) 

and 

Cj(r)=(1/jt) cos (~r/jt)r 2. (4.4) 
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The convolution of G( r )  with Sj(r) yields 

G( r) * Sj( r) =[AcrR2/ (j2t2 + ¢r2R4)] 

X { ' f f R  2 COS [ ¢i'jtr2/(j2t2 -t- "ff2R4)] 

+ j t  s i n  [ ¢rjtr2/(j2t2 + ¢r2R4)]}  

×exp[ - r2 / (R2+j2 t2 / c r2R2) ] .  ( 4 . 5 )  

The convolution of G( r )  with C~ (r) yields 

G(r) * C~( r) = Acrg2/ (j2t2 + ¢rEg 4) 

x {jt cos [ ¢rjtr2/(j2 t 2 + ¢r 2R 4)] 

- erR 2 sin [ ¢rjtr2/(jEt2 + ¢r2R4)]} 

× ¢xp[-r2/(gE+jEt2/cr2R2)]. (4.6) 

Equations (4.5) and (4.6) show that the convolution 
of a Gaussian function with either a Fresnel sine or 
a Fresnel cosine function results in another Gaussian 

function: 

G'(r)~exp[-r2/(R2+j2t2/~r2R2)]. (4.7) 

The standard deviation of G ' ( r )  is greater than that 
of the original Gaussian function and increases 
monotonically with the increase ofj.  This means that 
the greater j is the wider G ' ( r )  spreads. 

Figs. l ( a ) ,  (b) and (c) illustrate the forms of the 
Fresncl sine function, the Gaussian function (4.1) 
and their convolution fo r j  -- 1, 15 and 30 respectively. 
Fig. 2 shows the same for the case of the Fresnel 
cosine functions. Here R = 0 . 5 ~ ,  A = I  and t =  
0.0526 ~2. The variations of 

G(r) * S~(r)lr=o= A~r2R~/(jEtE+ ~rER ~) (4.8) 

and of 

G(r) * C~(r)l,=o=A~rR~jt/(fit2+~r2R 4) (4.9) 
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Fig. 1. Curves of  the Fresnel sine function multiplied by jt, jtSj(r), 
function G(r) and the convolution G(r) * Sj(r) for (a) j= 1, 
(b) j = 15 and ( c ) j  = 30. The curve of G(r) * Sl(r) and that  of  
G(r) almost coincide for small r as shown in (a). Here A= 1, 
R = 0.5 A, t = 0.0526 A 2. 

(c) 
Fig. 2. Curves of  the Fresnel cosine function mult ipl ied by jr, 

jtCj( r), funct ion G( r) and the convolution G( r) * C~( r) for ( a )  

j = l ,  (b) j = 1 5  and (c) j = 3 0 .  Here A = I ,  R = 0 . 5 A ,  t =  
0.0526/k 2. 
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with the value o f j  are very different to each other as 
shown in Fig. 3. When j < R2/t, 

O( r) * Sj( r)lr=o> G( r) * Cj(r)lr=o, 
and vice versa. 

It is expected that the convolution of a real PPDF 
tp(x, y) with the Fresnel sine and cosine functions 
would act as in the case of a Gaussian function: the 
convolution of ~o(x,y) with Sj(x,y) and Cj(x,y) 
would result in a function spread wider than ~p(x, y). 
Therefore, ~p(x, y) * Sj(x, y) and ~(x, y) * Cj(x, y) 
are recognized as Fresnel-sine- and Fresnel-cosine- 
spread PPDFs respectively. Furthermore, there 
should be a certain value j~, for which when j <j~ the 
Fresnel sine spread PPFD would have a greater value 
than the Fresnel cosine spread PPDF at the positions 
of the atoms, and vice versa. 

5. Pseudo-weak-phase-object approximation 

If tr=~E(x, y) is ignored, (3.9) can be rewritten as 

I,,+,(x,y)= 1 -  2trq~,,+,(x, y), 

where 

(5.1) 

q~,,+,2(x,y)=~o(x,y)+Aq~,,+,(x,y) (5.2) 

and 

A~0,+,(x, y) = ~p(x, y) * ~ Sj(x, y) 
j = l  

-o'~p(x, y)[~p(x, y) * ~ Sj(x, y)] 
j = l  

y) , Sj(x, y) 
j = l  

y) • G(x, y) (5.3) 
j = l  

Owing to the formal resemblance of (5.1) to the 
expression for WPOA it is reasonable to treat 
~,,+1 (x, y) as the PPDF of a pseudo weak phase object. 

o 

2-0 40 j 

Fig. 3. Dependence of  G(r )  * St(r)lr=o and G(r )  * Ci( r)[r=o upon 
the slice number j. A = 1, R = 0-5 A, t = 0.0526 A 

The increment A~o,,+l(x, y) is closely related to the 
crystal thickness or the slice number n. The first-order 
terms of ~p(x, y) given on the right-hand side of (5.3) 
introduce a positive increment while all second-order 
terms introduce a negative one. On the basis of the 
knowledge about the Fresnel sine and Fresnel cosine 
spread PPDF it is easy to imagine that ~,,+l(x,y) 
would spread wider and wider with the increase in 
n. In addition, for very small n the peak height of a 
Fresnel-sine-spread PPDF is much greater than that 
of the corresponding cosine one, so that the positive 
terms in (5.3) play an essential role while the sum of 
all negative terms is negligible. This leads to an 
approximately linear relationship between ¢(x ,y)  
and the increment Aq~,+~(x, y). Thus, Aq~,+l(x, y) and 
q~,+l(x, y) would have their peaks at the same posi- 
tions as q~(x,y) and peak heights almost linearly 
related to those of q~(x, y). With the increase of n, 
the Fresnel-cosine-spread PPDF terms in (5.3) 
become non-negligible and the relationship between 
~o,+~(x,y) and q~(x,y) begins to deviate from the 
linear one. But for ordinary n, ~o,+l(x, y) may still 
have its peaks at the same position as q~(x, y) and the 
peak heights monotonically relate to those of ~o(x, y). 
When n reaches a critical value no, q~,+~(x, y) would 
be equal to zero at the position of the heaviest atoms. 
With further increase of n, q~,,+~(x,y) would have 
negative peaks at the positions of the relatively 
heavier atoms and positive peaks at the positions of 
the lighter atoms so that ~0,+~(x, y) would no more 
resemble ~o(x,y). This is schematically shown in 
Fig. 4. 

Hence, if the crystal is thick for the WPOA to hold 
but thinner than the critical thickness (ncAz), which 

.~On+ I 

n=o 

r 

n>O 

A A f 

n=n¢ 

/k 
r 

n >no 

A 
C H 

Fig. 4. Variation of  function ~p,+l(x, y) with the slice number n. 
nc denotes the critical slice number, L the position of  the light 
atom and H the position of  the heavy atom. When n = no, 
¢,+~(x, y) becomes zero at the positions of  the heavy atoms. 
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depends upon the heaviest atom in the crystal and 
the electron wavelength (Tang, 1984), then the crystal 
can be treated as a pseudo weak phase object (Li & 
Tang, 1984a, b). The PPDF of the pseudo weak phase 
object, ~0n+l(x, y), would be equivalent to the PPDF 
of an imaginary isomorph of the crystal, where the 
real atoms are replaced by the imaginary atoms. The 
constituent heavy and light atoms of this imaginary 
isomorph are respectively lighter and heavier than 
those of the real crystal. Thus the image contrast of 
the crystal would be roughly proportional to the 
PPDF of the imaginary isomorph. 

The above argument yields the following con- 
clusion. For very thin crystals the image contrast is 
close to that of WPOA. For thicker crystals, but not 
thicker than the critical thickness, the image remains 
closely related to the projection of the crystal structure 
although it spreads at the positions of atoms. 
However, the relative contrast of the light atoms is 
enhanced compared with the heavy atoms. When the 
crystal is thicker than the critical thickness there is 
no longer one to one correspondence between the 
image and the crystal structure. 

6. Calculated images of chlorinated copper 
phthalocyanine 

Fig. 5 shows the PPDF of a chlorinated Cu 
phthalocyanine crystal (Uyeda et al., 1978-79), which 
is used to check the formula derived. The images 
calculated for different crystal thicknesses with 
PWPOA and the multislice method (Cowley & 
Moodie, 1957) are respectively shown in the left and 
right columns of Fig. 6. The calculated image in the 
PWPOA for a one-slice crystal (Fig. 6a) is in fact the 
image in the WPOA. Its contrast is similar to the 
PPDF (Fig. 5). According to the PWPOA, the images 
of all atoms become diffuse with the increase of 
specimen thickness and the contrast of light atoms 
increases more rapidly than the heavy atoms (Figs. 
6/7 and c). The centers of the copper atoms begin to 

~:' ..... ~,lv) L ~til~ iliti' ~flti..( ":'. ...... '-"':";'" " 
. . . .  -,. : . . . . . . . . . . . . .  7.#.! • 

¢iti@-" -itti! ' . !iiii-~{f!':' , :~  iii!~.'iii~f 
i ;  ,i i-"fi'<... 77{ii:-"iiii! . . . . . .  
,., . . . .  ,J!..--,..!.. ~"~ ....... ,ill 
/;ilt"-cl.": ~(!If~(i!! ~ <;.Jtlii-~l.r.+ 
'~'-": 711!! ...-7!i,~t{i~.-:rf!7i{(:~fic+ !!!! ....ii7 

" D ' : < i i i ;  i ~r': :..ili~ ~If i f~: .~. 7,1 ~ 
{liif 7 j i  "x.:~i ~i,,:.,'.~f~,i : ~';e~'lilt ,a: /.-tit'.- 
i~: ~ i  '7iil~..<li;~-t~li.,,ift{... ~ i ;  ;,~, 
; !  --- '..rt, - . t :  

:!L~.il{~ 7i !  ... :,iti! ;~,': # it~,lf 1 
{~{f,'.'~ ~,.~. 4ii!~+.,;.. <1! i l l ;  # i i  : i  

Fig. 5. PPDF of chlorinated Cu phthalocyanine. 

turn bright in the image with twelve slices (Fig. 6d). 
This implies that this crystal thickness is thicker than 
the critical one. The center positions of the chlorine 
atoms begin to turn bright in the image of 16 slices 

P W P O A  s l i c e  n u m b e r  M S  

(a) (f)  

(b) 

(c) 

• i :i . . . . .  

(d) 

I; "; | 6  

(e) 

Fig. 6. Calculated images of chlorinated Cu phthalocyanine for 
different crystal thicknesses and for accelerating voltage 5011 kV. 
(a) to (e) are calculated with the PWPOA and (J0 to (j)  with 
the multislice method for the spherical aberration coefficient 
(7, = 1-0 mm and underfocus 440/t,. The slice thickness is 3.76/t,. 
The image of  a one-slice crystal in PWPOA (a) resembles the 
PPDF (Fig. 5). In the images of  four and eight-slice crystals (b 
and c) the contrast of light atoms becomes relatively higher. In 
the image of  a 12-slice crystal (d) the centers of the copper 
atoms begin to turn bright. In the image of a 16-slice crystal (e) 
the centers of  the chlorine atoms begin to turn bright and copper 
atoms become brighter, while carbon and nitrogen remain dark. 
Each corresponding pair of  images (a and f, b and g, c and h, 
d and / ,  e and j )  shows a close resemblance at the positions of 
the atoms but not in the background. 

( h )  

(i) 

U) 
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(Fig. 6e), where copper atoms become brighter, while 
carbon and nitrogen atoms remain dark. It can be 
seen that the corresponding pairs show a close image 
contrast at the positions of atoms for crystals below 
the critical thickness (about 56 A). 

7. Validity and advantages of the PWPOA 

Since the multislice method in image simulation is 
widely accepted and usually shows good agreement 
with the experimental results, it is reasonable to evalu- 
ate the limit of the validity of the PWPOA from the 
comparison of figures in Fig. 6. Obviously, PWPOA 
can be used to interpret the variation of the image 
contrast with the crystal thickness at the position of 
atoms for crystals below the critical thickness. 
Because in the PWPOA the Fresnel diffraction is 
taken into consideration while the multiple scattering 
is neglected, and because the PWPOA can be used 
for interpreting the image contrast at the positions of 
atoms but not on the background, we can say that 
below the critical crystal thickness the deviation of 
the image contrast from the pure kinematical treat- 
ment at the atom positions is mainly caused by the 
Fresnel diffraction from one slice to the next, while 
that of the background is by multiple scattering. 

Besides, the PWPOA indicates a possibility of 
revealing preferentially light or heavy atoms in the 
images for crystals consisting of atoms of different 
atomic number in the image by choosing different 
crystal thicknesses. This seems to have more practical 
meaning for ultra-high-voltage high-resolution elec- 

tron microscope observation, where the critical crystal 
thickness allows the crystal being examined to be 
thicker. 

The authors would like to express their gratitude 
to Professor H. Hashimoto of Osaka University for 
reading the manuscript and for beneficial discussions. 
Thanks are also due to his research group for the use 
of the multislice image simulation program. 
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Abstract 

Difference Patterson functions can be constructed for 
difference structures arising from superlattice or 
incommensurate transformations. In each case the 
difference structure may belong to one of several 
symmetry types, namely the irreducible representa- 
tions of the space group of the average structure, at 

0108-7673/85/040382-05501.50 

the relevant symmetry k vector in reciprocal space. 
The relationship between the symmetry of the differ- 
ence Patterson function and the irreducible rep- 
resentation is discussed. In particular it is shown that 
the difference Patterson function contains a 'character 
signature' of plus and minus signs, which, in the case 
of a one-dimensional irreducible representation, 
identifies that representation uniquely. Examples 
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